An Artificial Network-Based Prediction of Key Reference Zones on Axial Stress–Strain Curves of FRP-Confined Concrete

نویسندگان

چکیده

The accurate prediction of reference points on the axial stress–axial strain relationship fiber-reinforced polymer (FRP)-confined concrete is vital to pre-design structures made with this system. This study uses an artificial neural network (ANN) for predicting hoop rupture (εh,rup) and transition zone, namely (εc1) stress (f’c1), stress–strain curves FRP-confined concrete. These are key parameters estimating a zone curves. In study, accompanied these parameters, ultimate condition including compressive strength strain, were predicted using comprehensive database. Various combinations input data ANN used increase accuracy predictions. A sensitivity analysis model validation assessment performed evaluate predictability developed models. At end, comparison between proposed models in existing design-oriented was presented. It shown that higher or comparable Additionally, predict f’c1 εc1 exhibit compared results indicate capture lateral confinement effect zones more robust performance

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Compressive Strength Prediction by ANN Formulation Approach for FRP Confined Rectangular Concrete Columns

Enhancement of strength and ductility is the main reason for the extensive use of FRP (fiber reinforced polymer) jackets to provide external confinement to reinforced concrete columns especially in seismic areas. Therefore, numerous researches have been carried out in order to provide a better description of the behavior of FRP confined concrete for practical design purposes. This study present...

متن کامل

Prediction of Ultimate Strain and Strength of FRP-Confined Concrete Cylinders Using Soft Computing Methods

This paper investigates the effectiveness of four different soft computing methods, namely radial basis neural network (RBNN), adaptive neuro fuzzy inference system (ANFIS) with subtractive clustering (ANFIS-SC), ANFIS with fuzzy c-means clustering (ANFIS-FCM) and M5 model tree (M5Tree), for predicting the ultimate strength and strain of concrete cylinders confined with fiber-reinforced polymer...

متن کامل

Behavior of FRP-Confined Concrete-Filled Steel Tube Columns

This paper presents the results of an experimental study into the behavior of concrete-filled steel tube columns confined by fiber-reinforced polymer (FRP). Eleven columns were tested to investigate the effects of the FRP layer number, the thickness of the steel tube and concrete strength on their load capacity and axial deformation capacity. The experimental results indicated that the FRP wrap...

متن کامل

Prediction of Cardiovascular Diseases Using an Optimized Artificial Neural Network

Introduction:  It is of utmost importance to predict cardiovascular diseases correctly. Therefore, it is necessary to utilize those models with a minimum error rate and maximum reliability. This study aimed to combine an artificial neural network with the genetic algorithm to assess patients with myocardial infarction and congestive heart failure.   Materials & Methods: This study utilized a m...

متن کامل

Nanofluid Thermal Conductivity Prediction Model Based on Artificial Neural Network

Heat transfer fluids have inherently low thermal conductivity that greatly limits the heat exchange efficiency. While the effectiveness of extending surfaces and redesigning heat exchange equipments to increase the heat transfer rate has reached a limit, many research activities have been carried out attempting to improve the thermal transport properties of the fluids by adding more thermally c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied sciences

سال: 2023

ISSN: ['2076-3417']

DOI: https://doi.org/10.3390/app13053038